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Problem. (Proposed by Daniel Sitaru-Romania).

In acute ABC the following relationship holds:
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Solution by Arkady Alt, San Jose,California, USA.
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For further let ABC be any fixed triangle (not to be confused with acute triangle ABC

from the problem statement) with angles ,, opposite sides BC,CA,AB,

respectively and let a,b,c, s,R and r be standard notation for sidelengths, semiperimeter,

circumradius and inradius, respectively.
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Thus, the proof of inequality of the problem for any acute triangles equivalently

reduced to the proof of inequality (2) for any triangle.

Since by Cauchy Inequality a
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then for completing solution of the problem remains to prove inequality
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2,where F  rs is area of ABC and ha,hb,hc

be altitudes in ABC.Let la, lb, lc be lengths of angle bisectors from vertices A,B,C,

respectively. Since hx
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and using well known inequality* a2  b2  c2  9R2
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* Since a2  b2  c2  2s2  4Rr  r2, s2  4R2  4Rr  3r2(Gerretsen’s Inequality)

and R  2r (Euler’s Inequality) we have
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Another, short proof of inequality a2  b2  c2  9R2 based on using distance

formula in baricentric geometry.


