https://www.linkedin.com/feed/update/urn:li:activity:6480801970801250304

## Problem. (Proposed by Daniel Sitaru-Romania).

In acute $\triangle A B C$ the following relationship holds:

$$
\frac{a \cos A}{b \cos B}+\frac{b \cos B}{c \cos C}+\frac{c \cos C}{a \cos A} \leq \frac{3}{8 \cos A \cos B \cos C}
$$

## Solution by Arkady Alt, San Jose,California, USA.

Since $a: b: c=\sin A: \sin B: \sin C$ then $\sum \frac{a \cos A}{b \cos B}=\sum \frac{2 R \sin A \cos A}{2 R \sin B \cos B}=\sum \frac{\sin 2 A}{\sin 2 B}$.
Denoting $\alpha:=\pi-2 A, \beta:=\pi-2 B, \gamma:=\pi-2 C$ we obtain $\alpha+\beta+\gamma=\pi$ and $\alpha, \beta, \gamma>0$
(because $A, B, C<\pi / 2$ ). Then, $\sum \frac{a \cos A}{b \cos B} \leq \frac{3}{8 \cos A \cos B \cos C} \Leftrightarrow$

$$
\begin{equation*}
\sum \frac{\sin \alpha}{\sin \beta} \leq \frac{3}{8 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}} \tag{1}
\end{equation*}
$$

For further let $\triangle A B C$ be any fixed triangle (not to be confused with acute triangle $A B C$ from the problem statement) with angles $\alpha, \beta, \gamma$ opposite sides $B C, C A, A B$, respectively and let $a, b, c, s, R$ and $r$ be standard notation for sidelengths, semiperimeter, circumradius and inradius, respectively.
Since $r=4 R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$ and $\sum \frac{\sin \alpha}{\sin \beta}=\sum \frac{2 R \sin \alpha}{2 R \sin \beta}=\sum \frac{a}{b}$ then (1) $\Leftrightarrow$ (2) $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{3 R}{2 r}$.

Thus, the proof of inequality of the problem for any acute triangles equivalently reduced to the proof of inequality (2) for any triangle.
Since by Cauchy Inequality $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$
then for completing solution of the problem remains to prove inequality

$$
\begin{equation*}
\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq \frac{9 R^{2}}{4 r^{2}} \tag{3}
\end{equation*}
$$

We have $\sum \frac{1}{a^{2}}=\sum \frac{h_{a}^{2}}{4 F^{2}}=\frac{1}{4 r^{2} s^{2}} \sum h_{a}^{2}$, where $F=r s$ is area of $\triangle A B C$ and $h_{a}, h_{b}, h_{c}$ be altitudes in $\triangle A B C$. Let $l_{a}, l_{b}, l_{c}$ be lengths of angle bisectors from vertices $A, B, C$, respectively. Since $h_{x}^{2} \leq l_{x}^{2}$ and $l_{x}^{2} \leq s(s-x), x \in\{a, b, c\}$ then $\sum h_{a}^{2} \leq \sum s(s-a)=s^{2}$. Hence, $\sum \frac{1}{a^{2}} \leq \frac{1}{4 r^{2} s^{2}} \cdot s^{2}=\frac{1}{4 r^{2}}$ and using well known inequality* $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$ we finally obtain $\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq \frac{9 R^{2}}{4 r^{2}}$.

* Since $a^{2}+b^{2}+c^{2}=2\left(s^{2}-4 R r-r^{2}\right), s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen's Inequality) and $R \geq 2 r$ (Euler's Inequality) we have $9 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)=9 R^{2}-2\left(s^{2}-4 R r-r^{2}\right) \geq 9 R^{2}-2\left(\left(4 R^{2}+4 R r+3 r^{2}\right)-4 R r-r^{2}\right)=$ $(R-2 r)(R+2 r) \geq 0$.
Another, short proof of inequality $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$ based on using distance formula in baricentric geometry.

